МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 18» ГОРОДА ОБНИНСКА

принято:

на педагогическом совете МБОУ «СОШ № 18» Протокол заседания методического совета № 10-пс от «24» мая 2024 г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«МОБИЛЬНАЯ РОБОТОТЕХНИКА»

НАПРАВЛЕННОСТЬ: ТЕХНИЧЕСКАЯ

Уровень: базовый

Возраст обучающихся: 10 - 12 лет

Срок реализации:1 год

Составитель: педагог дополнительного образования

Эебердыев Г.К.

Раздел 1. «Комплекс основных характеристик программы»

1.1. Пояснительная записка

Данная программа является дополнительной общеобразовательной общеразвивающей технической направленности, очной формы обучения, сроком реализации 1 год, для детей 10 - 12лет творческого - уровня освоения.

Язык реализации программы: государственный язык РФ – русский.

В наше время робототехники и компьютеризации, ребенка необходимо учить решать задачи с помощью автоматов, которые он сам может спроектировать и воплотить его в реальной модели, т.е. непосредственно сконструировать и запрограммировать.

Использование конструктора LEGO EV3 позволяет создать уникальную образовательную среду, которая способствует развитию инженерного, конструкторского мышления. В процессе работы с LEGO EV3 ученики приобретают опыт решения как типовых, так и нешаблонных задач по конструированию, программированию, сбору данных. Кроме того, работа в команде способствует формированию умения взаимодействовать с соучениками, формулировать, анализировать, критически оценивать, отстаивать свои идеи.

LEGO EV3 обеспечивает простоту при сборке начальных моделей, что позволяет ученикам получить результат в пределах одного или пары уроков. И при этом возможности в изменении моделей и программ – очень широкие, и такой подход позволяет учащимся усложнять модель и программу, проявлять самостоятельность в изучении темы. Программное обеспечение LEGO MINDSTORMS Education EV3 обладает очень широкими возможностями, в частности, позволяет вести рабочую тетрадь и представлять свои проекты прямо в среде программного обеспечения LEGO EV3.

Проект программы составлен в соответствии с государственными требованиями к образовательным программам системы дополнительного образования детей на основе следующих нормативных документов (список необходимо отслеживать и обновлять в соответствии с направленностью программы))

- 1.Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации»;
- 2.Приказ Министерства просвещения Российской Федерации от 27 июля 2022 года № 696 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- 3.Письмо Минобрнауки РФ от 18.11.2015 № 09-3242 «О направлении рекомендаций» (вместе «Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- 4. Распоряжение Правительства Российской Федерации от 31 марта 2022 года № 678-р «Концепция развития дополнительного образования детей»;
- 5. Распоряжение Правительства Российской Федерации от 29 мая 2015 года № 996-р «Стратегия развития воспитания в Российской Федерации на период до 2025 года»;
- 6. Постановление Главного государственного санитарного врача РФ от 28 сентября 2020 г. №28 «Об утверждении санитарных правил СП 2.4.3648 20 «Санитарно эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;

- **1.** *Григорьев*, *Д. В.* Внеурочная деятельность школьников. Методический конструктор: пособие для учителя / Д. В. Григорьев, П. В. Степанов. М. : Просвещение, 2010. 223 с. (Стандарты второго поколения).
- **2.** *Формирование* универсальных учебных действий в основной школе: от действия к мысли. Система заданий : пособие для учителя / под ред. А. Г. Асмолова. М. : Просвещение, 2010.-159 с. (Стандарты второго поколения).

7. Устав учреждения. Локальные нормативные акты учреждения.

Актуальность данной программы формирование у учащихся информационной культуры через моделирование, конструирование и компьютерное управление Легороботами в соответствии с основными физическими принципами и базовыми техническими решениями, лежащими в основе всех современных конструкций и устройств.

Новизна данной дополнительной общеобразовательной общеразвивающей программы состоит в том, что изучая простые механизмы, ребята учатся работать руками (развитие мелких и точных движений), развивают элементарное конструкторское мышление, фантазию, изучают принципы работы многих механизмов, осваивают прикладное программирование.

Отличительная особенность данной программы в том, что данный курс даст возможность школьникам закрепить и применить на практике полученные знания по таким дисциплинам, как математика, физика, информатика, технология. На занятиях по техническому творчеству учащиеся соприкасаются со смежными образовательными областями. За счет использования запаса технических понятий и специальных терминов расширяются коммуникативные функции языка, углубляются возможности лингвистического развития обучающегося.

Адресат программы:

Обучение рассчитано на детей 10 - 12 лет Комплектование групп: одновозрастные Уровень освоения программы – базовый Объём программы - 34 часов Срок освоения программы – 1 год

Режим занятий: 1 раз в неделю по 1 часу

Формы занятий с детьми: мастерская, выставки.

1.2. Цель и задачи

Цель программы:

Изучение курса «Мобильной робототехники» направлено на достижение следующей цели: развитие интереса школьников к технике и техническому творчеству.

Задачи:

Обучающие:

- Организовать активную внеурочную деятельность учащихся на основе знакомства с современными направлениями развития робототехники.
- Познакомить учащихся с профессией инженера, с мировыми трендами в робототехнике;
- Реализовать на занятиях межпредметные связи с физикой, информатикой и математикой.
- Научиться решать задачи, результатом которых будут программно-управляемые

Воспитательные:

- Повышать мотивацию учащихся к изобретательству и созданию собственных проектов.
- Формировать у учащихся стремления к получению качественного результата.
- Формировать навыки работы в команде: распределение между собой обязанностей, освоение культуры и этики общения.

В результате учебной деятельности, для решения разнообразных учебно-познавательных и учебно-практических задач, у обучающихся будут формироваться и развиваться необходимые универсальные учебные действия и специальные учебные умения, что заложит основу успешной учебной деятельности в средней и старшей школе.

Развивающие:

- Развивать у школьников алгоритмическое мышление, навыки конструирования и программирования. Развивать мелкую моторику, внимательность, аккуратность.
- Развивать умение наблюдать окружающий мир как сложную систему взаимосвязанных объектов;
- Развивать творческое мышление и пространственное воображение учащихся.
- Участвовать в конкурсах и состязаниях роботов в целях мотивации обучения.

1.3. Учебно - тематический план

№ п/п	Наименование темы	Всего	Теория	Практика	Формы занятий	Формы аттестации/ контроля
1	Введение в робототехнику	2	2			
2	Знакомство с роботами LEGO MINDSTORMS EV3 EDU.	4	2	2		
3	Датчики LEGO и их параметры.	6		6		
4	Основы программирования и компьютерной логики	9	3	6		
5	Практикум по сборке роботизированных систем	8		8		
6	Творческие проектные работы и соревнования	5		5		
	ИТОГО	34	7	27		

1.4. Содержание программы

1. Тема: Введение в робототехнику.

Теория. Поколения роботов. История развития робототехники. Применение роботов.

2. Тема: Знакомство с роботами LEGO MINDSTORMS EV3 EDU.

Основные детали конструктора. Микропроцессор **NXT**. Сервомоторы. Датчики. Подключение моторов и датчиков. Меню **NXT**.

Теория. Конструкторы LEGO Mindstorms **NXT** базовый и ресурсный наборы.

Практика. Основные детали конструктора. Микропроцессор **NXT**. Сервомоторы. Датчики.

3. Тема: Датчики LEGO и их параметры.

Практика. Подключение моторов и датчиков. Меню **NXT**.

4. Тема: Основы программирования и компьютерной логики

Теория. Программирование на **NXT**.

Практика. Выгрузка и загрузка. Интерфейс ПО LEGO Mindstorms NXT.

5. Тема: Практикум по сборке роботизированных систем.

Практика. Пульт управления роботом. Первые простые программы. Передача и запуск программ. Тестирование робота.

6. Тема: Творческие проектные работы и соревнования.

Практика. Движение, повороты и развороты. Воспроизведение звуков и управление звуком. Движение робота с ультразвуковым датчиком и датчиком касания.

1.5. Планируемые результаты

Планируемые результаты освоения программы включают следующие направления: формирование универсальных учебных действий (личностных, регулятивных, коммуникативных, познавательных), учебную и общепользовательскую ИКТ-компетентность обучающихся, опыт исследовательской и проектной деятельности, навыки работы с информацией.

Предметные результаты:

Выпускник научится:

- основам безопасной работы с механическими устройствами и конструкторами Lego Mindstorms NXT
- правильно называть основные компоненты робототизированных программноуправляемых средств
- создавать реально действующие модели роботов при помощи специальных элементов по разработанной схеме, по собственному замыслу
- устанавливать программное обеспечение для работы с Lego-роботами и работать в среде виртуального программирования
- управлять движением роботов по заданной траектории
- программировать движение роботов с датчиками звука, касания

Выпускник получит возможность:

- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.);
- демонстрировать технические возможности роботов
- сравнивать и анализировать конструктивные особенности различных роботов

Личностные результаты:

- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками в процессе творческой деятельности,
- формирование способности учащихся к саморазвитию и самообучению,

- формирование осознанного выбора и построения дальнейшей образовательной траектории на основе профессиональных предпочтений,
- развитие эстетического сознания через изучение правил и приемов дизайна моделей.

Метапредметные результаты:

- умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения;
- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе; находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;
- формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции). Личностные результаты, такие как:
- формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
- формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности.

Раздел 2. «Комплекс организационно-педагогических условий»

2.1. Календарно - тематический план

(Приложение 1).

2.2. Условия реализации программы Материально-техническое обеспечение

Успешной реализации учебного процесса способствует соответствующая материально-техническая база.

Наличие: 1. учебного кабинета (студии) для занятий с детьми.

№	Наименование оборудования	Количество
1	Базовый набор LEGO MINDSTORMS Education NXT.	
2	Лицензионное программное обеспечение LEGO	
	MINDSTORMS Education NXT.	
3	Зарядное устройство (NXT).	
4	Ресурсный набор LEGO MINDSTORMS Education NXT.	
5	Четыре поля для занятий (Кегельринг, Траектория, Квадраты	
	и Биатлон). Дополнительно необходимо скачать (бесплатно) и	
	установить следующее программное обеспечение:	
6	программа трёхмерного моделирования LEGO	
	DigitalDesigner;	
7	звуковой редактор Audacity;	
8	конвертер звуковых файлов wav2rso.	

Дидактическое обеспечение

Дидактический материал включает в себя специальную и дополнительную литературу, разработки отдельных методических аспектов необходимых для проведения занятий (Приложение 2).

2.3. Формы аттестации

Два раза в год во всех группах проводится промежуточная и итоговая аттестация, которая отслеживает личностный рост ребёнка по следующим параметрам:

- усвоение знаний по базовым темам программы;
- овладение умениями и навыками, предусмотренными программой;
- развитие художественного вкуса;
- формирование коммуникативных качеств, трудолюбия и работоспособности.

Используются следующие формы проверки: защита творческих работ, проектов, выставка и т.д.

Методы проверки: наблюдение, тестирование, анализ творческих работ и т.п.

Итоговая аттестация осуществляется в форме защиты творческого проекта

2.4. Контрольно-оценочные материалы

- 1. Проверочные работы
- 2. Практические занятия
- 3. Творческие проекты

При организации практических занятий и творческих проектов формируются малые группы, состоящие из 2-3 учащихся. Для каждой группы выделяется отдельное рабочее место, состоящее из компьютера и конструктора.

Преобладающей формой текущего контроля выступает проверка работоспособности робота:

- о выяснение технической задачи,
- о определение путей решения технической задачи

Контроль осуществляется в форме творческих проектов, самостоятельной разработки работ.

2.5. Методическое обеспечение

Основная форма занятий: упражнения и выполнение групповых и индивидуальных практических работ. При изучении нового материала используются словесные формы: лекция, эвристическая беседа, дискуссия. При реализации личных проектов используются формы организации самостоятельной работы. Значительное место в организации образовательного процесса отводится практическому участию детей в соревнованиях, разнообразных мероприятиях по техническому моделированию и прототипированию.

Организация образовательного процесса по данной программе предполагает создание для обучающихся творческой, свободной, комфортной среды. Этому способствует использование педагогом методов обучения, позволяющих достичь максимального результата. К ним относятся беседа, рассказ, объяснения, показ, демонстрация иллюстративного материала и фотографий. Применяются активные методы обучения: выполнение практических работ, выставки, экскурсии, выход на фотосъемку натуры. Педагогом активно используются современные образовательные технологии: проектные, информационно-коммуникационные, личностно-ориентированного обучения, технологии мастерских.

Занятия по программе строятся на следующих принципах:

усвоения материала от простого к сложному, единства воспитания и обучения, последовательности, доступности, индивидуальности, самореализации.

Характер деятельности обучающихся: поисковый, исследовательский.

Программа рассчитана на подростково-юношеский возраст и предполагает установление оптимального разрешения его кризиса, в методико-педагогическом плане ориентирована на системно-комплексный подход в выборе форм и методов обучения.

2.6. Список литературы

Литература для педагога

Сайты, использованные для разработки программы и организации образовательного процесса:

http://www.prorobot.ru/lego.php

http://nau-ra.ru/catalog/robot

http://www.239.ru/robot

http://www.russianrobotics.ru/actions/actions 92.html

http://habrahabr.ru/company/innopolis_university/blog/210906/STEM-робототехника

http://www.slideshare.net/odezia/2014-39493928

http://www.slideshare.net/odezia/ss-40220681

http://www.slideshare.net/odezia/180914-39396539

Календарно - тематическое планирование программы «Мобильная робототехника»

No	№	Тема учебного занятия	Дата	Часы	Содержание деятельности			
занятия	темы	темы			Теоретическая часть занятия Практическая часть заня			ая часть занятия
					Количество часов	Форма организации деятельности	Количество часов	Форма организации деятельности
1	1.1	Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов. Правила работы с конструктором LEGO		1	1	групповая		
2	1.2	Управление роботами. Методы общения с роботом. Состав конструктора LEGO MINDSTORMS EV3. Языки программирования. Среда программирования модуля, основные блоки.		1	1	групповая		
3	2.1	Правила техники безопасности при работе с роботами-конструкторами. Правила обращения с роботами. Основные механические детали конструктора и их назначение.		1	1	групповая		
4	2.2	Модуль EV3. Обзор, экран, кнопки управления модулем, индикатор состояния, порты.		1	1	групповая		

		Установка батарей, способы экономии энергии. Включение модуля EV3. Запись программы и запуск ее на выполнение.			
5	2.3	Сервомоторы EV3, сравнение моторов. Мощность и точность мотора. Механика механизмов и машин. Виды соединений и передач и их свойства.	1	1	групповая
6	2.4	Сборка модели робота по инструкции. Программирование движения вперед по прямой траектории. Расчет числа оборотов колеса для прохождения заданного расстояния.	1	1	групповая
7	3.1	Датчик касания. Устройство датчика. Практикум. Решение задач на движение с использованием датчика касания.	1	1	групповая
8	3.2	Датчик цвета, режимы работы датчика. Решение задач на движение с использованием датчика	1	1	групповая
9	3.3	Ультразвуковой датчик. Решение задач на движение с использованием датчика расстояния	1	1	групповая
10	3.4	Гироскопический датчик. Инфракрасный датчик, режим	1	1	групповая

11	3.5						
		Подключение датчиков и					
		моторов.					
		Интерфейс модуля EV3.	1			1	групповая
		Приложения модуля.	1			1	групповия
		Представление порта.					
		Управление мотором.					
12	3.6	Проверочная работа № 1 по					
		теме «Знакомство с роботами	1			1	групповая
		LEGO MINDSTORMS».					
13	4.1	Среда программирования					
		модуля. Создание программы.					
		Удаление блоков. Выполнение	1	1	групповая		
		программы. Сохранение и					
1.4	4.2	открытие программы.					
14	4.2	Счетчик касаний. Ветвление					
		по датчикам.	1	,			
		Методы принятия решений	1	1	групповая		
		роботом. Модели поведения					
15	4.3	при разнообразных ситуациях.					
13	4.3	Программное обеспечение EV3.					
		Среда LABVIEW.					
		Основное окно					
		Свойства и структура проекта.	1	1	групповая		
		Решение задач на движение	1	1	групповия		
		вдоль сторон квадрата.					
		Использование циклов при					
		решении задач на движение.					
16	4.4	Программные блоки и					
		палитры программирования					
		Страница аппаратных средств	1			1	групповая
		Редактор контента					

		Инструменты Устранение неполадок. Перезапуск модуля			
17	4.5	Решение задач на движение по кривой. Независимое управление моторами. Поворот на заданное число градусов. Расчет угла поворота.	1	1	групповая
18	4.6	Использование нижнего датчика освещенности. Решение задач на движение с остановкой на черной линии.	1	1	групповая
19	4.7	Решение задач на движение вдоль линии. Калибровка датчика освещенности.	1	1	групповая
20	4.8	Программирование модулей. Решение задач на прохождение по полю из клеток	1	1	групповая
21	4.9	Соревнование роботов на тестовом поле. Зачет времени и количества ошибок	1	1	групповая
22	5.1	Измерение освещенности. Определение цветов. Распознавание цветов. Использование конструктора в качестве цифровой лаборатории.	1	1	групповая
23	5.2	Измерение расстояний до объектов. Сканирование местности.	1	1	групповая
24	5.3	Сила. Плечо силы.	1	1	групповая

		Подъемный кран. Счетчик оборотов. Скорость вращения сервомотора. Мощность.			
25	5.4	Управление роботом с помощью внешних воздействий. Реакция робота на звук, цвет, касание. Таймер.	1	1	групповая
26	5.5	Движение по замкнутой траектории. Решение задач на криволинейное движение.	1	1	групповая
27	5.6	Конструирование моделей роботов для решения задач с использованием нескольких разных видов датчиков.	1	1	групповая
28	5.7	Решение задач на выход из лабиринта. Ограниченное движение.	1	1	групповая
29	5.8	Проверочная работа №2 по теме «Виды движений роботов»	1	1	групповая
30	6.1	Работа над проектами «Движение по заданной траектории», «Кегельринг». Правила соревнований.	1	1	групповая
31	6.2	Соревнование роботов на тестовом поле. Зачет времени и количества ошибок	1	1	групповая
32	6.3	Конструирование собственной модели робота	1	1	групповая

33	6.4	Программирование и испытание собственной модели робота.	1		1	групповая
34	6.5	Презентации и защита проекта «Мой уникальный робот»	1		1	групповая
		итого:	34	7	27	