МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 18» ГОРОДА ОБНИНСКА

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
Председатель ШМО	Заместитель директора по УВР	Директор МБОУ «СОПІ № 18»
Meg. Illeghegela OB	CADamm TIE.H. BOAKOBOL	/И.Н. Марутина/
	« <u>30» 08</u> 20 <u>22</u> г.	Donald State of the Color of th
Протокол заседания мето-		Приказ от « <u>30 » 08</u> 20 <u>22</u> г.
дического объединения		No <u>57 (1)</u> * * * * * * * * * * * * * * * * * * *
от « <u>30</u> » <u>08</u> 20 <u>22 г</u> .		Wil
No		The state of the s

Рабочая программа по учебному предмету «Химия» для 10 -11-х классов (углубленный уровень)

Программу составила: Медведева О.В.

Планируемые результаты изучения учебного курса «Химия»

Федеральный государственный образовательный стандарт среднего общего образования устанавливает следующие требования к результатам освоения обучающимися основной образовательной программы:

• к личностным результатам освоения основной образовательной программы:

- 1) воспитание российской гражданской идентичности, патриотизма, уважения к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн);
- 2) формирование гражданской позиции как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности;
- 3) готовность к служению Отечеству, его защите;
- 4) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- 5) сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;
- 6) толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;
- 7) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- 8) нравственное сознание и поведение на основе усвоения общечеловеческих ценностей;

• к метапредметным результатам освоения основной образовательной программы:

- 1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;
- 2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- 4) готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 5) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- 6) умение определять назначение и функции различных социальных институтов;
- 7) умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;
- 8) владение языковыми средствами умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

9) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения;

к предметным результатам освоения основной образовательной программы, относящимся к учебному предмету

«Химия»:

— на базовом **уровне**:

- 1) сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- 2) владение основополагающими химическими понятиями, теориями, законами и закономерностями; уверенное пользование химической терминологией и символикой;
- 3) владение основными методами научного познания, используемыми в химии: наблюдение, описание, измерение, эксперимент; умение обрабатывать, объяснять результаты проведенных опытов и делать выводы; готовность и способность применять методы познания при решении практических задач;
- 4) сформированность умения давать количественные оценки и проводить расчеты по химическим формулам и уравнениям;
- 5) владение правилами техники безопасности при использовании химических веществ;
- 6) сформированность собственной позиции по отношению к химической информации, получаемой из разных источников;
- 7) для обучающихся с ограниченными возможностями здоровья овладение основными доступными методами научного познания;
- 8) для слепых и слабовидящих обучающихся овладение правилами записи химических формул с использованием рельефно-точечной системы обозначений Л. Брайля;

— на углубленном уровне:

- 1) сформированность системы знаний об общих химических закономерностях, законах, теориях;
- 2) сформированность умений исследовать свойства неорганических и органических веществ, объяснять закономерности протекания химических реакций, прогнозировать возможность их осуществления;
- 3) владение умениями выдвигать гипотезы на основе знаний о составе, строении вещества и основных химических законах, проверять их экспериментально, формулируя цель исследования;
- 4) владение методами самостоятельного планирования и проведения химических экспериментов с соблюдением правил безопасной работы с веществами и лабораторным оборудованием; сформированность умений описания, анализа и оценки достоверности полученного результата;
- 5) сформированность умений прогнозировать, анализировать и оценивать с позиций экологической безопасности последствия бытовой и производственной деятельности человека, связанной с переработкой веществ.
 - 1. Регулятивные универсальные учебные действия

Выпускник научится:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы; организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;
 - определять несколько путей достижения поставленной цели;

- выбирать оптимальный путь достижения цели с учетом эффективности расходования ресурсов и основываясь на соображениях этики и морали;
- задавать параметры и критерии, по которым можно определить, что цель достигнута; сопоставлять полученный результат деятельности с поставленной заранее целью;

оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей.

2. Познавательные универсальные учебные действия

Выпускник научится:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
 - искать и находить обобщенные способы решения задач;
- приводить критические аргументы как в отношении собственного суждения, так и в отношении действий и суждений другого;
 - анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем; формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над ее решением; управлять совместной познавательной деятельностью и подчиняться).
 - 3. Коммуникативные универсальные учебные действия

Выпускник научится:

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы; координировать и выполнять работу в условиях виртуального взаимодействия (или сочетания реального и виртуального);
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнеров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития; точно и емко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Выпускник на углубленном уровне научится:

— раскрывать на примерах роль химии в формировании современной научной картины мира и в практической деятельности человека, взаимосвязь между химией и другими естественными науками;

- сопоставлять исторические вехи развития химии с историческими периодами развития промышленности и науки для проведения анализа состояния, путей развития науки и технологий;
- анализировать состав, строение и свойства веществ, применяя положения основных химических теорий: химического строения органических соединений А. М. Бутлерова, строения атома, химической связи, электролитической диссоциации кислот, оснований и солей, а также устанавливать причинно-следственные связи между свойствами вещества и его составом и строением; применять правила систематической международной номенклатуры как средства различения и идентификации веществ по их составу и строению;
- составлять молекулярные и структурные формулы неорганических и органических веществ как носителей информации о строении вещества, его свойствах и принадлежности к определенному классу соединений;
- объяснять природу и способы образования химической связи: ковалентной (полярной, неполярной), ионной, металлической, водородной с целью определения химической активности веществ;
- характеризовать физические свойства неорганических и органических веществ и устанавливать зависимость физических свойств веществ от типа кристаллической решетки;
- характеризовать закономерности в изменении химических свойств простых веществ, водородных соединений, высших оксидов и гидроксидов;
- приводить примеры химических реакций, раскрывающих характерные химические свойства неорганических и органических веществ изученных классов с целью их идентификации и объяснения области применения;
- определять механизм реакции в зависимости от условий проведения реакции и прогнозировать возможность протекания химических реакций на основе типа химической связи и активности реагентов;
- устанавливать зависимость реакционной способности органических соединений от характера взаимного влияния атомов в молекулах с целью прогнозирования продуктов реакции;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- устанавливать генетическую связь между классами неорганических и органических веществ для обоснования принципиальной возможности получения неорганических и органических соединений заданного состава и строения;
- подбирать реагенты, условия и определять продукты реакций, позволяющих реализовать лабораторные и промышленные способы получения важнейших неорганических и органических веществ;
- определять характер среды в результате гидролиза неорганических и органических веществ и приводить примеры гидролиза веществ в повседневной жизни человека, биологических обменных процессах и промышленности;
- приводить примеры окислительно-восстановительных реакций в природе, производственных процессах и жизнедеятельности организмов;
- обосновывать практическое использование неорганических и органических веществ и их реакций в промышленности и быту;
- выполнять химический эксперимент по распознаванию и получению неорганических и органических веществ, относящихся к различным классам соединений, в соответствии с правилами и приемами безопасной работы с химическими веществами и лабораторным оборудованием;
- проводить расчеты на основе химических формул и уравнений реакций: нахождение молекулярной формулы органического вещества по его плотности и массовым долям элементов, входящих в его состав или по продуктам сгорания; расчеты массовой доли (массы) химического соединения в смеси; расчеты массы (объема, количества вещества) продук-

тов реакции, если одно из веществ дано в избытке (имеет примеси); расчеты массовой или объемной доли выхода продукта реакции от теоретически возможного; расчеты теплового эффекта реакции; расчеты объемных отношений газов при химических реакциях; расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества;

- использовать методы научного познания: анализ, синтез, моделирование химических процессов и явлений при решении учебно-исследовательских задач по изучению свойств, способов получения и распознавания органических веществ;
- владеть правилами безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать химическую информацию, содержащуюся в сообщениях средств массовой информации, ресурсах Интернета, научнопопулярных статьях с точки зрения естественно-научной корректности в целях выявления ошибочных суждений и формирования собственной позиции;
- находить взаимосвязи между структурой и функцией, причиной и следствием, теорией и фактами при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний;
- представлять пути решения глобальных проблем, стоящих перед человечеством, и перспективных направлений развития химических технологий, в том числе технологий современных материалов с различной функциональностью, возобновляемых источников сырья, переработки и утилизации промышленных и бытовых отходов.

Выпускник на углубленном уровне получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о химических свойствах веществ на основе их состава и строения, их способности вступать в химические реакции, о характере и продуктах различных химических реакций;
- самостоятельно планировать и проводить химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- интерпретировать данные о составе и строении веществ, полученные с помощью современных физико-химических методов;
- описывать состояние электрона в атоме на основе современных квантовомеханических представлений о строении атома для объяснения результатов спектрального анализа веществ;
- характеризовать роль азотосодержащих гетероциклических соединений и нуклеиновых кислот как важнейших биологически активных веществ;
- прогнозировать возможность протекания окислительно-восстановительных реакций, лежащих в основе природных и производственных процессов.

Содержание учебного курса «Химия» в 10 классе - 105 ч., в 11 классе - 102 ч.

			В том числе			
Номер	Тема	Количество часов по программе	Лаборатор- ные работы	практические рабо- ты	контрольные рабо- ты	
1	Тема 1. Повторение и углубление знаний	18	4		1	
2	Тема 2. Основные понятия органиче-	13				

	ской химии				
3	Тема 3. Углеводороды	27		2	1
4	Тема 4. Кислородсодержащие органи-	19	6	4	1
5	ческие соединения				
	Тема 5. Азот- и серосодержащие со-	5			
6	единения				
	Тема 6. Биологически активные веще-	16	2	2	1
6	ства				
	Тема 7. Синтетические высокомолеку-	7	1	2	
/	лярные соединения				
	ИТОГО:	105	13	10	4

			В том числе			
Номер	Тема	Количество часов по программе	Лаборатор- ные работы	практические рабо- ты	контрольные рабо- ты	
1	Тема 1. Неметаллы	31	9	4	1	
2	Тема 2. Общие свойства металлов	2				
3	Тема 3. Металлы главных подгрупп	11	8	5		
4	Тема 4. Металлы побочных подгрупп	17	5	3	1	
5	Тема 5. Строение вещества	8				
6	Тема 6. Теоретическое описание химических реакций	17	1	1	1	
7	Тема 7. Химическая технология	6				
8	Тема 8. Химия в повседневной жизни	3	1	1		
9	Тема 9. Химия на службе общества	3	2			
10	Тема 10. Химия в современной науке	4			1	
	ИТОГО:	102	26	14	4	

Тематическое планирование с указанием основных видов деятельности учащихся:

10 класс

Тема1. Повторение и углубление знаний (18ч)

Атомно-молекулярное учение. Вещества молекулярного и немолекулярного строения. Качественный и количественный состав вещества. Молярная и относительная молекулярная массы вещества. Мольная доля и массовая доля элемента в веществе.

Строение атома. Атомная орбиталь. Правила заполнения электронами атомных орбиталей. Валентные электроны. Периодический закон. Формулировка закона в свете современных представлений о строении атома. Изменение свойств элементов и их соединений в периодах и группах.

Химическая связь. Электроотрицательность. Виды химической связи. Ионная связь. Ковалентная неполярная и полярная связь. Обменный и донорно-акцепторный механизм образования ковалентной полярной связи. Геометрия молекулы. Металлическая связь. Водородная связь. Агрегатные состояния вещества. Типы кристаллических решеток: атомная, молекулярная, ионная, металлическая.

Расчеты по формулам и уравнениям реакций. Газовые законы. Уравнение Клайперона—Менделеева. Закон Авогадро. Закон объемных отношений. Относительная плотность газов.

Классификация химических реакций по различным признакам сравнения. Изменение степени окисления элементов в соединениях. Окислительно-восстановительные реакции. Окисление и восстановление. Окислители и восстановители. Метод электронного баланса. Перманганат калия как окислитель.

Важнейшие классы неорганических веществ. Генетическая связь между классами неорганических соединений. Реакции ионного обмена. Гидролиз. рН среды.

Растворы. Способы выражения количественного состава раствора: массовая доля (процентная концентрация), молярная концентрация. Коллоидные растворы. Эффект Тиндаля. Коагуляция. Синерезис. Комплексные соединения. Состав комплексного иона: комплексообразователь, лиганды. Координационное число. Номенклатура комплексных соединений.

<u>Демонстрации.</u> 1. Образцы веществ молекулярного и немолекулярного строения. 2. Возгонка иода. 3. Определение кислотности среды при помощи индикаторов. 4. Эффект Тиндаля. 5. Образование комплексных соединений переходных металлов.

<u>Лабораторные опыты.</u> 1.Реакции ионного обмена. 2. Свойства коллоидных растворов. 3. Гидролиз солей. 4. Получение и свойства комплексных соединений.

<u>Практическая работа №1</u>. Выполнение экспериментальных задач по теме «Реакционная способность веществ в растворах».

Контрольная работа №1 по теме «Основы химии».

Виды деятельности

Объяснять положения атомно-молекулярного учения. Оперировать понятиями «химический элемент», «атом», «молекула», «вещество», «физическое тело». Объяснять значение химической формулы вещества как выражение качественного и количественного состава вещества. Рассчитывать массовые и мольные доли элементов в химическом соединении. Определять формулы соединений по известным массовым, мольным долям элементов. Характеризовать Периодическую систему химических элементов Д. И. Менделеева как графическое отображение Периодического закона. Предсказывать свойства заданного элемента и его соединений, основываясь на Периодическом законе и известных свойствах простых веществ металлов и неметаллов. Объяснять закономерности изменения свойств элементов, простых веществ, высших оксидов и гидроксидов в группах. Конкретизировать понятие «химическая связь». Обобщать понятия «ковалентная неполярная связь», «ковалентная полярная связь», «ионная связь», «водородная связь», «металлическая связь». Классифицировать типы химической связи и объяснять их механизмы. Предсказывать тип химической связи, зная формулу или физические свойства вещества.

Тема 2. Основные понятия органической химии (13 ч)

Предмет органической химии. Особенности органических веществ. Значение органической химии. Причины многообразия органических веществ. Углеродный скелет, его типы: циклические, ациклические. Карбоциклические и гетероциклические скелеты. Виды связей в молекулах органических веществ: одинарные, двойные, тройные. Изменение энергии связей между атомами углерода при увеличении кратности связи. Насыщенные и ненасыщенные соединения.

Электронное строение и химические связи атома углерода. Гибридизация орбиталей, ее типы для органических соединений: sp3, sp2, sp. Образование V- и S-связей в молекулах органических соединений.

Основные положения структурной теории органических соединений. Химическое строение. Структурная формула. Структурная и пространственная изомерия. Изомерия углеродного скелета. Изомерия положения. Межклассовая изомерия. Виды пространственной изомерии. Оптическая изомерия. Оптические антиподы. Хиральность. Хиральные и ахиральность.

ные молекулы. Геометрическая изомерия (цис-, транс-изомерия). Гомология. Гомологи. Гомологическая разность. Гомологические ряды.

Электронные эффекты. Способы записей реакций в органической химии. Схема и уравнение. Условия проведения реакций.

Классификация реакций органических веществ по структурному признаку: замещение, присоединение, отщепление. Механизмы реакций. Способы разрыва связи углеродуглерод. Свободные радикалы, нуклеофилы и электрофилы. Классификация органических веществ и реакций. Основные классы органических соединений. Классификация органических соединений по функциональным группам. Электронное строение органических веществ. Взаимное влияние атомов и групп атомов. Индуктивный и мезомерный эффекты. Представление о резонансе. Номенклатура органических веществ. Международная (систематическая) номенклатура органических веществ, ее принципы. Рациональная номенклатура. Окисление и восстановление в органической химии.

Демонстрации. 1. Модели органических молекул.

Виды деятельности

Различать предметы изучения органической и неорганической химии. Сравнивать органические и неорганические соединения. Наблюдать демонстрируемые опыты и описывать их с помощью родного языка и языка химии. Осуществлять расчеты по установлению формул углеводородов по элементному составу и по анализу продуктов сгорания. Использовать алгоритмы при решении задач. Характеризовать особенности строения атома углерода. Описывать нормальное и возбужденное состояния атом углерода и отражать их графически. Оперировать понятиями «гибридизация орбиталей», «sp3-гибридизация», «sp2 - гибридизация», «sp-гибридизация». Описывать основные типы гибридизации атома углерода.

Тема 3. Углеводороды (27 ч)

Алканы в природе. Синтетические способы получения алканов. Методы получения алканов из алкилгалогенидов (реакция Вюрца), декарбоксилированием солей карбоновых кислот и электролизом растворов солей карбоновых кислот. Применение алканов.

Ц и к л о а л к а н ы. Общая характеристика класса, физические свойства. Виды изомерии. Напряженные и ненапряженные циклы. Химические свойства циклопропана (горение, гидрирование, присоединение галогенов, галогеноводородов, воды) и циклогексана (горение, хлорирование, нитрование). Получение циклоалканов из алканов и дигалогеналканов.

Алкены. Общая характеристика класса. Строение молекулы этилена. Физические свойства алкенов. Геометрическая изомерия алкенов. Химические свойства алкенов. Реакции присоединения по кратной связи — гидрирование, галогенирование, гидрогалогенирование, гидратация. Правило Марковникова и его объяснение с точки зрения электронной теории. Взаимодействие алкенов с бромом и хлором в газовой фазе или на свету. Окисление алкенов (горение, окисление кислородом в присутствии хлорида палладия, под действием серебра, окисление горячим подкисленным раствором перманганата калия, окисление по Вагнеру). Полимеризация. Получение алкенов из алканов, алкилгалогенидов и дигалогеналканов. Применение этилена и пропилена.

Алкадиены. Классификация диеновых углеводородов. Сопряженные диены. Физические и химические свойства дивинила и изопрена. 1,2- и 1,4-присоединение. Полимеризация. Каучуки. Вулканизация каучуков. Резина и эбонит. Синтез бутадиена из бутана и этанола.

Алкины. Общая характеристика. Строение молекулы ацетилена. Физические и химические свойства алкинов. Реакции присоединения галогенов, галогеноводородов, воды. Гидрирование. Тримеризация и димеризация ацетилена. Кислотные свойства алкинов с концевой тройной связью. Ацетилиды. Окисление алкинов раствором перманганата калия. При-

менение ацетилена. Карбидный метод получения ацетилена. Пиролиз метана. Синтез алкинов алкилированием ацетилидов. А р е н ы. Понятие об ароматичности. Правило Хюккеля. Бензол — строение молекулы, физические свойства. Гомологический ряд бензола. Изомерия дизамещенных бензолов на примере ксилолов. Реакции замещения в бензольном ядре (галогенирование, нитрование, алкилирование). Реакции присоединения к бензолу (гидрирование, хлорирование на свету). Особенности химии алкилбензолов. Правила ориентации заместителей в реакциях замещения. Бромирование и нитрование толуола. Окисление алкилбензолов раствором перманганата калия. Галогенирование алкилбензолов в боковую цепь. Реакция Вюрца—Фиттига как метод синтеза алкилбензолов. Стирол как пример непредельного ароматического соединения.

Природные источники углеводородов. Природный и попутный нефтяные газы, их состав, использование. Нефть как смесь углеводородов. Первичная и вторичная переработка нефти. Риформинг. Каменный уголь.

Генетическая связь между различнымиклассами углеводо родо в. Качественные реакции на непредельные углеводороды.

Галогено производные углеводородов. Реакции замещения галогена на гидроксил, нитрогруппу, цианогруппу. Действие на галогенпроизводные водного и спиртового раствора щелочи. Сравнение реакционной способности алкил-, винил-, фенил- и бензилгалогенидов. Использование галогенпроизводных в быту, технике и в синтезе. Понятие о магнийорганических соединениях. Получение алканов восстановлением иодалканов иодоводородом. Магнийорганические соединения.

<u>Демонстрации.</u> 1. Бромирование гексана на свету. 2. Горение метана, этилена, ацетилена. 3. Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде. 4. Окисление толуола раствором перманганата калия. 5. Получение этилена реакцией дегидратации этанола, ацетилена — гидролизом карбида кальция. 6. Получение стирола деполимеризацией полистирола и испытание его отношения к раствору перманганата калия.

<u>Лабораторные опыты</u>. Составление моделей молекул алканов. Взаимодействие алканов с бромом. Составление моделей молекул непредельных соединений.

Практическая работа №2. Составление моделей молекул углеводородов.

Практическая работа №3. Получение этилена и опыты с ним.

Контрольная работа №2 по теме «Углеводороды».

Виды деятельности

Называть углеводороды по международной номенклатуре. Объяснять электронное строение молекул изученных веществ. Обобщать знания и делать выводы о закономерностях изменений свойств в гомологическом ряду углеводородов. Моделировать молекулы изученных классов веществ. Наблюдать демонстрируемые опыты и описывать их с помощью родного языка и языка химии

Тема 4. Кислородсодержащие органические соединения (19 ч)

Сп и рт ы. Номенклатура и изомерия спиртов. Токсическое действие на организм метанола и этанола. Физические свойства предельных одноатомных спиртов. Химические свойства спиртов (кислотные свойства, реакции замещения гидроксильной группы на галоген, межмолекулярная и внутримолекулярная дегидратация, окисление, реакции углеводородного радикала). Алкоголяты. Гидролиз, алкилирование (синтез простых эфиров по Вильямсону). Промышленный синтез метанола. Многоатомные спирты. Этиленгликоль и глицерин, их физические и химические свойства. Синтез диоксана из этиленгликоля. Токсичность этиленгликоля. Качественная реакция на многоатомные спирты. Простые эфиры как изомеры предельных одноатомных спиртов. Сравнение их физических и химических свойств со спиртами. Реакция расщепления простых эфиров иодоводородом.

Фенола. Номенклатура и изомерия. Взаимное влияние групп атомов на примере фенола. Физические и химические свойства фенола и крезолов. Кислотные свойства фенолов

в сравнении со спиртами. Реакции замещения в бензольном кольце (галогенирование, нитрование). Окисление фенолов. Качественные реакции на фенол. Применение фенола.

Карбонильных соединений в спирты. Качественные реакции на альдегидную группу. Реакции альдегиды и кетоновой конденсации. Особенности формальдегида. Реакция формальдегида с фенолом.

К а р б о н о в ы е к и с л о т ы. Электронное строение карбоксильной группы. Гомологический ряд предельных одноосновных карбоновых кислот. Физические свойства карбоновых кислот на примере муравьиной, уксусной, пропионовой, пальмитиновой и стеариновой кислот. Химические свойства карбоновых кислот. Кислотные свойства (изменение окраски индикаторов, реакции с активными металлами, основными оксидами, основаниями, солями). Изменение силы карбоновых кислот при введении донорных и акцепторных заместителей. Взаимодействие карбоновых кислот со спиртами (реакция этерификации). Галогенирование карбоновых кислот в боковую цепь. Особенности муравьиной кислоты. Важнейшие представители класса карбоновых кислот и их применение. Получение муравьиной и уксусной кислот в промышленности. Высшие карбоновые кислоты. Щавелевая кислота как представитель дикарбоновых кислот. Представление о непредельных и ароматических кислотах. Особенности их строения и свойств. Значение карбоновых кислот.

Ф ун к ц и о н а л ь н ы е п р о и з в о д н ы е к а р б о н о в ы х к и с л о т. Получение хлорангидридов и ангидридов кислот, их гидролиз. Получение сложных эфиров с использованием хлорангидридов и ангидридов кислот. Сложные эфиры как изомеры карбоновых кислот. Сравнение физических свойств и реакционной способности сложных эфиров и изомерных им карбоновых кислот. Гидролиз сложных эфиров. Синтез сложных эфиров фенолов. Сложные эфиры неорганических кислот. Нитроглицерин. Амиды. Соли карбоновых кислот, их термическое разложение в присутствии щелочи. Синтез карбонильных соединений разложением кальциевых солей карбоновых кислот.

<u>Демонстрации.</u> 1. Взаимодействие натрия с этанолом. 2. Окисление этанола оксидом меди. 3.Горение этанола. 4. Взаимодействие трет-бутилового спирта с соляной кислотой. 5. Иодоформная реакция. 6. Качественная реакция на многоатомные спирты. 7. Качественные реакции на фенолы. 8. Определение альдегидов при помощи качественных реакций. 9. Окисление альдегидов перманганатом калия. 10. Получение сложных эфиров.

<u>Лабораторные опыты</u>. 5. Свойства этилового спирта. 6. Свойства глицерина. 7. Свойства фенола. Качественные реакции на фенолы. 8. Свойства формалина. 9. Свойства уксусной кислоты. 10. Соли карбоновых кислот.

Практическая работа №4. Получение бромэтана.

Практическая работа №5. Получение ацетона.

Практическая работа №6. Получение уксусной кислоты.

Практическая работа №7. Получение этилацетата.

<u>Практическая работа № 8</u>. Решение экспериментальных задач по теме «Кислородсодержащие органические вещества».

Контрольная работа №3 по теме «Кислородсодержащие органические вещества».

Виды деятельности

Называть представителей кислородсодержащих соединений по международной номенклатуре. Объяснять электронное строение молекул изученных веществ. Обобщать знания и делать выводы о закономерностях изменений физических свойств в гомологическом ряду изученных классов веществ. Характеризовать промышленные и лабораторные способы получения соединений и их применение. Характеризовать химические свойства и области применения изученных соединений.

Тема 5. Азот- и серосодержащие соединения (5 ч)

Нитросоединения. Электронное строение нитрогруппы. Получение нитросоединений. Взрывчатые вещества.

А м и н ы. Изомерия аминов. Первичные, вторичные и третичные амины. Физические свойства простейших аминов. Амины как органические основания. Соли алкиламмония. Алкилирование и ацилирование аминов. Реакции аминов с азотистой кислотой. Ароматические амины. Анилин. Взаимное влияние групп атомов в молекуле анилина. Химические свойства анилина (основные свойства, реакции замещения в ароматическое ядро, окисление, ацилирование). Диазосоединения. Получение аминов из спиртов и нитросоединений. Применение анилина. Сероорганические соединения. Представление о сероорганических соединениях. Особенности их строения и свойств. Значение сероорганических соединений.

Гетероциклов. Электронное строение молекулы пиррола. Кислотные свойства пиррола. Пиридин как представитель шестичленных гетероциклов. Электронное строение молекулы пиридина. Основные свойства пиридина, реакции замещения с ароматическим ядром. Представление об имидазоле, пиридине, пурине, пуриновых и пиримидиновых основаниях.

<u>Демонстрации.</u> 1. Основные свойства аминов. 2. Качественные реакции на анилин. 3. Анилиновые красители. 4. Образцы гетероциклических соединений.

Лабораторные опыты. Качественные реакции на анилин.

<u>Практическая работа №9</u>. Решение экспериментальных задач по теме «Азотсодержащие органические вещества».

Виды деятельности

Называть представителей кислородсодержащих соединений по международной номенклатуре. Объяснять электронное строение молекул изученных веществ. Обобщать знания и делать выводы о закономерностях изменений физических свойств в гомологическом ряду изученных классов веществ. Характеризовать промышленные и лабораторные способы получения соединений и их применение. Характеризовать химические свойства и области применения изученных соединений.

Тема 6. Биологически активные вещества (16 ч)

Ж и р ы как сложные эфиры глицерина и высших карбоновых кислот. Омыление жиров. Гидрогенизация жиров. Мыла как соли высших карбоновых кислот.

Углеводов. Моно- и дисахариды. Функции углеводов. Биологическая роль углеводов. Глюкоза — физические свойства, линейная и циклическая формы. Реакции глюкозы (окисление азотной кислотой, восстановление в шестиатомный спирт), качественные реакции на глюкозу. Брожение глюкозы. Фруктоза как изомер глюкозы. Рибоза и дезоксирибоза. Понятие о гликозидах.

Д и с а х а р и д ы. Сахароза как представитель невосстанавливающих дисахаридов. Мальтоза и лактоза, целлобиоза. Гидролиз дисахаридов. Получение сахара из сахарной свеклы.

Полисахаридов. Крахмал, гликоген, целлюлоза. Качественная реакция на крахмал. Гидролиз полисахаридов.

Нуклеотиды. Нуклеотиды. Нуклеотиды. Нуклеотиды. Нуклеинове кислоты как природные полимеры. Строение ДНК и РНК. Гидролиз нуклеиновых кислот.

А м и н о к и с л о т ы как амфотерные соединения. Реакции с кислотами и основаниями. Образование сложных эфиров. Пептиды. Пептидная связь. Амидный характер пептидной связи. Гидролиз пептидов. Белки. Первичная, вторичная и третичная структуры белков. Качественные реакции на белки.

<u>Демонстрации.</u> 1. Растворимость углеводов в воде и этаноле. 2. Качественные реакции на глюкозу. 3. Образцы аминокислот.

<u>Лабораторные опыты.</u> 11. Свойства глюкозы. Качественная реакция на глюкозу. Определение крахмала в продуктах питания. 12. Цветные реакции белков.

Контрольная работа № 4 по теме «Азотсодержащие и биологически активные органические вещества».

Виды деятельности

Характеризовать состав углеводов и их классификацию. Прогнозировать свойства неизученных веществ по аналогии с изученными веществами того же гомологического ряда. Раскрывать биологическую роль углеводов. Характеризовать свойства глюкозы как вещества с двойственной функцией (альдегидоспирта). Объяснять электронное строение молекул глюкозы и рибозы. Сравнивать строение и свойства глюкозы и фруктозы. Характеризовать биологическую роль изученных веществ. Исследовать свойства изучаемых веществ. Наблюдать и описывать химические реакции с помощью родного языка и языка химии. Соблюдать правила и приемы безопасной работы с химическими веществами и лабораторным оборудованием.

Тема 7. Высокомолекулярные соединения (7ч)

Понятие о высокомолекулярных веществах. Полимеризация и поликонденсация как методы создания полимеров. Эластомеры. Природный и синтетический каучук. Сополимеризация. Современные пластики (полиэтилен, полипропилен, полистирол, поливинилхлорид, фторопласт, полиэтилентерефталат, акрил-бутадиен-стирольный пластик, поликарбонаты). Природные и синтетические волокна (обзор).

<u>Демонстрации.</u> 1. Образцы пластиков. 2. Коллекция волокон. 3. Поликонденсация этиленгликоля с терефталевой кислотой.

<u>Лабораторные опыты</u>. 13. Отношение синтетических волокон к растворам кислот и щелочей.

Практическая работа №10. Распознавание пластиков.

Практическая работа №11. Распознавание волокон.

Виды деятельности

Исследовать свойства изучаемых веществ. Наблюдать и описывать химические реакции с помощью родного языка и языка химии. Соблюдать правила и приемы безопасной работы с химическими веществами и лабораторным оборудованием.

11 класс

Тема 1. Неметаллы (31 ч)

Водород. Получение, физические и химические свойства (реакции с металлами и неметаллами, восстановление оксидов и солей). Гидриды. Топливные элементы.

Галогены. Общая характеристика элементов главной подгруппы VII группы. Физические свойства простых веществ. Закономерности изменения окислительной активности галогенов в соответствии с их положением в периодической таблице. Порядок вытеснения галогенов из растворов галогенидов.

Хлор — получение в промышленности и лаборатории, реакции с металлами и неметаллами. Взаимодействие хлора с водой и растворами щелочей. Цепной механизм реакции взаимодействия хлора с водородом. Обеззараживание питьевой воды хлором. Хранение и транспортировка хлора. Кислородные соединения хлора. Гипохлориты, хлораты и перхлораты как типичные окислители. Особенности химии фтора, брома и иода. Качественная реакция на иод.

Галогеноводороды — получение, кислотные и восстановительные свойства. Хлороводород. Галогеноводородные кислоты и их соли. Соляная кислота и ее соли. Качественные реакции на галогенид-ионы. Применение галогенов и их важнейших соединений.

Элементы подгруппы кислорода. Общая характеристика элементов главной подгруппы VI группы. Физические свойства простых веществ. Озон как аллотропная модификация кислорода. Получение озона. Озонаторы. Озон как окислитель. Позитивная и негативная роль озона в окружающей среде. Взаимодействие озона с алкенами. Сравнение свойств озона и кислорода.

Вода и пероксид водорода как водородные соединения кислорода — сравнение свойств. Пероксид водорода как окислитель и восстановитель. Пероксиды металлов. Понятие об органических пероксидах.

Сера. Аллотропия серы. Физические и химические свойства серы (взаимодействие с металлами, кислородом, водородом, растворами щелочей, кислотами-окислителями). Взаимодействие серы с сульфитом натрия с образованием тиосульфата натрия.

Сероводород — получение, кислотные и восстановительные свойства. Сульфиды. Дисульфан. Понятие о полисульфидах. Сернистый газ как кислотный оксид. Окислительные и восстановительные свойства сернистого газа. Получение сернистого газа в промышленности и лаборатории. Сернистая кислота и ее соли. Серный ангидрид. Серная кислота. Свойства концентрированной и разбавленной серной кислоты. Действие концентрированной серной кислоты на сахар, металлы, неметаллы, сульфиды. Термическая устойчивость сульфатов. Кристаллогидраты сульфатов металлов. Качественная реакция на серную кислоту и ее соли.

Элементы подгруппы азота. Общая характеристика элементов главной подгруппы V группы. Физические свойства простых веществ. Азот и его соединения. Строение молекулы азота. Физические и химические свойства азота. Получение азота в промышленности и лаборатории. Нитриды.

Аммиак — его получение, физические и химические свойства. Основные свойства водных растворов аммиака. Аммиак как восстановитель. Взаимодействие аммиака с активными металлами. Амид натрия, его свойства. Соли аммония. Поведение солей аммония при нагревании. Качественная реакция на ион аммония. Применение аммиака. Оксиды азота, их получение и свойства. Оксид азота (I). Окисление оксида азота (II) кислородом. Димеризация оксида азота (IV). Азотистая кислота и ее соли. Нитриты как окислители и восстановители.

Азотная кислота — физические и химические свойства, получение. Азотная кислота как окислитель (отношение азотной кислоты к металлам и неметаллам). Зависимость продукта восстановления азотной кислоты от активности металла и концентрации кислоты. Понятие о катионе нитрония. Особенность взаимодействия магния и марганца с разбавленной азотной кислотой.

Нитраты, их физические и химические свойства (окислительные свойства и термическая устойчивость), применение.

Фосфор и его соединения. Аллотропия фосфора. Физические свойства фосфора. Химические свойства фосфора (реакции с кислородом, галогенами, металлами, сложными веществами-окислителями, щелочами). Получение и применение фосфора. Хлориды фосфора. Фосфин. Фосфорный ангидрид.

Ортофосфорная и метафосфорная кислоты и их соли. Качественная реакция на ортофосфаты. Разложение ортофосфорной кислоты. Применение фосфорной кислоты и ее солей. Биологическая роль фосфатов. Пирофосфорная кислота и пирофосфаты. Оксид фосфора (III), фосфористая кислота и ее соли. Фосфорноватистая кислота и ее соли. Подгруппа углерода. Общая характеристика элементов главной подгруппы IV группы.

Углерод. Аллотропия углерода. Сравнение строения и свойств графита и алмаза. Фуллерен как новая молекулярная форма углерода. Уголь: химические свойства, получение и применение угля. Карбиды. Гидролиз карбида кальция и карбида алюминия. Карбиды переходных металлов (железа, хрома и др.) как сверхпрочные материалы. Синтез-газ как основа современной промышленности.

Оксиды углерода. Электронное строение молекулы угарного газа. Уголь и угарный газ как восстановители. Реакция угарного газа с расплавами щелочей. Синтез формиатов. Образование угарного газа при неполном сгорании угля. Биологическое действие угарного

газа. Получение и применение угарного газа. Углекислый газ: получение, химические свойства (взаимодействие углекислого газа с водой, щелочами, магнием, пероксидами металлов). Электронное строение углекислого газа.

Угольная кислота и ее соли. Карбонаты и гидрокарбонаты: их поведение при нагревании. Качественная реакция на карбонат-ион. Нахождение карбонатов магния и кальция в природе: кораллы, жемчуг, известняки (известковые горы, карстовые пещеры, сталактиты и сталагмиты).

Кремний. Физические и химические свойства кремния. Реакции с углем, кислородом, хлором, магнием, растворами щелочей, сероводородом. Силан — водородное соединение кремния. Силициды. Получение и применение кремния. Оксид кремния (IV), его строение, физические и химические свойства, значение в природе и применение. Кремниевые кислоты и их соли. Гидролиз силикатов. Силикатные минералы — основа земной коры. Алюмосиликаты.

Благородные (инертные) газы. Общая характеристика элементов главной подгруппы VIII группы. Особенности химических свойств. Применение благородных газов.

Демонстрации. 1. Горение водорода. 2. Получение хлора (опыт в пробирке). 3. Окислительные свойства раствора гипохлорита натрия. 4. Опыты с бромной водой. 5. Плавление серы. 6. Горение серы в кислороде. 7. Взаимодействие железа с серой. 8. Горение сероводорода. 9. Осаждение сульфидов. 10. Свойства сернистого газа. 11. Действие концентрированной серной кислоты на медь и сахарозу. 12. Растворение аммиака в воде. 13. Основные свойства раствора аммиака. 14. Каталитическое окисление аммиака. 15. Получение оксида азота (II) и его окисление на воздухе. 16. Действие азотной кислоты на медь. 17. Горение фосфора в кислороде. 18. Превращение красного фосфора в белый и его свечение в темноте. 19. Взаимодействие фосфорного ангидрида с водой. 20. Образцы графита, алмаза, кремния. 21. Горение угарного газа. 22. Тушение пламени углекислым газом. 23. Разложение мрамора.

<u>Лабораторные опыты.</u> 1. Получение хлора и изучение его свойств. 2. Свойства хлор-содержащих отбеливателей. 3. Свойства брома, иода и их солей. 4. Изучение свойств серной кислоты и ее солей. 5. Изучение свойств водного раствора аммиака. 6. Свойства солей аммония. 7. Качественная реакция на карбонат-ион. 8. Испытание раствора силиката натрия индикатором. 9. Ознакомление с образцами природных силикатов.

<u>Практическая работа № 1</u>. Решение экспериментальных задач по теме «Галогены»

<u>Практическая работа № 2</u>. Решение экспериментальных задач по теме «Халькогены»

<u>Практическая работа № 3</u>. «Получение аммиака и изучение его свойств»

<u>Практическая работа № 4</u>. Решение экспериментальных задач по теме «Элементы подгруппы азота»

Контрольная работа № 1 по теме «Неметаллы»

Виды деятельности

Классифицировать неорганические вещества. Обобщать знания и делать выводы о закономерностях изменений свойств неметаллов в периодах и группах Периодической системы. Характеризовать общие свойства благородных (инертных) газов. Прогнозировать свойства неметаллов и их соединений на основе знаний о Периодическом законе. Характеризовать нахождение в природе, свойства, биологическую роль и области применения неметаллов. Наблюдать и описывать демонстрируемые опыты.

Тема 2. Металлы (2 ч)

Общий обзор элементов — металлов. Свойства простых веществ-металлов. Электрохимический ряд напряжений металлов. Металлические кристаллические решетки. Сплавы. Характеристика наиболее известных сплавов.

Виды деятельности

Характеризовать общие свойства щелочных металлов. Объяснять зависимость свойств щелочных металлов от строения. Обобщать знания и делать выводы о закономерностях измене-

ний свойств щелочных металлов. Прогнозировать свойства неизученных элементов и их соединений на основе знаний о Периодическом законе. Объяснять взаимосвязи между нахождением в природе, свойствами, биологической ролью и областями применения изучаемых веществ. Идентифицировать щелочные металлы по цвету пламени их солей. Наблюдать демонстрируемые и самостоятельно проводимые опыты. Наблюдать химические реакции и описывать их с помощью родного языка и языка химии. Соблюдать правила и приемы безопасной работы с химическими веществами и лабораторным опытом.

Тема 3.Металлы главных подгрупп (11 ч)

Получение и применение металлов. Щелочные металлы. Общая характеристика элементов главной подгруппы I группы. Свойства щелочных металлов. Распознавание катионов лития, натрия и калия. Натрий и калий — представители щелочных металлов. Характерные реакции натрия и калия. Получение щелочных металлов. Оксиды и пероксиды натрия и калия. Соединения натрия и калия. Соли натрия, калия, их значение в природе и жизни человека. Сода и едкий натр — важнейшие соединения натрия. Бериллий, магний, щелочноземельные металлы. Общая характеристика элементов главной подгруппы ІІ группы. Бериллий, магний, щелочноземельные металлы. Амфотерность оксида и гидроксида бериллия. Окраска пламени солями щелочноземельных металлов. Магний и кальций, их общая характеристика на основе положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства, применение магния, кальция и их соединений. Соли магния и кальция, их значение в природе и жизни человека. Жесткость воды и способы ее устранения. Алюминий. Распространенность в природе, физические и химические свойства (отношение к кислороду, галогенам, растворам кислот и щелочей, алюмотермия). Производство алюминия. Применение алюминия. Амфотерность оксида и гидроксида алюминия. Соли алюминия. Полное разложение водой солей алюминия со слабыми двухосновными кислотами. Алюминаты в твердом виде и в растворе. Комплексные соединения алюминия.

<u>Лабораторные опыты</u>. 10. Окрашивание пламени соединениями щелочных металлов. 11. Ознакомление с минералами и важнейшими соединениями щелочных металлов. 12. Свойства соединений щелочных металлов. 13. Окраска пламени соединениями щелочноземельных металлов. 14. Свойства магния и его соединений. 16. Жесткость воды. 17. Свойства алюминия. 18. Свойства соединений алюминия

<u>Практическая работа № 5</u>. Решение экспериментальных задач по теме «Металлы главных подгрупп»

Виды деятельности

Классифицировать неорганические вещества. Обобщать знания и делать выводы о закономерностях изменений свойств металлов в периодах и группах Периодической системы. Характеризовать общие свойства металлов. Прогнозировать свойства металлов и их соединений на основе знаний о Периодическом законе. Характеризовать нахождение в природе, свойства, биологическую роль и области применения металлов. Наблюдать и описывать демонстрируемые опыты.

Тема 4. Металлы побочных подгрупп (17 ч)

Общая характеристика переходных металлов I—VIII групп. Особенности строения атомов переходных металлов. Общие физические и химические свойства. Применение металлов.

Хром. Физические свойства хрома. Химические свойства хрома (отношение к водяному пару, кислороду, хлору, растворам кислот). Получение и применение хрома. Соединения хрома. Изменение окислительно-восстановительных и кис лотно-основных свойств оксидов и гидроксидов хрома с ростом степени окисления. Амфотерные свойства оксида и гидроксида хрома (III). Окисление солей хрома (III) в хроматы. Взаимные переходы хрома-

тов и дихроматов. Хроматы и дихроматы как окислители. Полное разложение водой солей хрома (III) со слабыми двухосновными кислотами. Комплексные соединения хрома.

Марганец. Физические свойства марганца. Химические свойства марганца (отношение к кислороду, хлору, растворам кислот). Получение и применение марганца. Оксид марганца (IV) как окислитель и катализатор. Перманганат калия как окислитель. Оксид и гидроксид марганца (II): получение и свойства. Соединения марганца (III). Манганат (VI) калия и манганат (V) калия, их получение.

Железо. Нахождение в природе. Значение железа для организма человека. Физические свойства железа. Химические свойства железа (взаимодействие с кислородом, хлором, серой, углем, водой, кислотами, растворами солей). Сплавы железа с углеродом. Получение и применение железа. Соединения железа. Сравнение кислотно-основных и окислительно-восстановительных свойств гидроксида железа (II) и гидроксида железа (III). Соли железа (II) и железа (III). Методы перевода солей железа (II) в соли железа (III) и обратно. Полное разложение водой солей железа (III) со слабыми двухосновными кислотами. Окислительные свойства соединений железа (III) в реакциях с восстановителями (иодидом, сероводородом и медью). Цианидные комплексы железа. Качественные реакции на ионы железа (II) и (III). Ферриты, их получение и применение.

Медь. Нахождение в природе. Биологическая роль. Физические и химические свойства (взаимодействие с кислоро дом, хлором, серой, кислотами-окислителями, хлоридом железа (III)). Взаимодействие меди с концентрированными соляной, бромоводородной и иодоводородной кислотами без доступа воздуха. Получение и применение меди. Оксид и гидроксид меди (II). Соли меди (II). Медный купорос. Аммиакаты меди (I) и меди (II). Получение оксида меди (I) восстановлением гидроксида меди (II) глюкозой. Получение хлорида и иодида меди (I).

Серебро. Физические и химические свойства (взаимодействие с сероводородом в присутствии кислорода, кислотами-окислителями). Осаждение оксида серебра при действии щелочи на соли серебра. Аммиакаты серебра как окислители. Качественная реакция на ионы серебра. Применение серебра.

Золото. Физические и химические свойства (взаимодействие с хлором, «царской водкой»). Золотохлороводородная кислота. Гидроксид золота (III). Комплексы золота. Способы выделения золота из золотоносной породы. Применение золота.

Цинк. Физические и химические свойства (взаимодействие с галогенами, кислородом, серой, водой, растворами кислот и щелочей). Получение и применение цинка. Амфотерность оксида и гидроксида цинка. Важнейшие соли цинка.

Ртуть. Физические и химические (взаимодействие с кислородом, серой, хлором, кислотами-окислителями) свойства. Получение и применение ртути. Амальгамы — сплавы ртути с металлами. Оксид ртути (II), его получение. Хлорид и иодид ртути (II).

Демонстрации. 1. Коллекция металлов. 2. Коллекция минералов и руд. 3. Коллекция «Железо и его сплавы». 4. Окрашивание пламени солями щелочных и щелочноземельных металлов. 5. Взаимодействие натрия с водой. 6. Взаимодействие кальция с водой. 7. Коллекция «Алюминий». 8. Плавление алюминия. 9. Взаимодействие алюминия со щелочью. 10. Алюмотермия. 11. Взаимодействие хрома с соляной кислотой без доступа воздуха. 12. Осаждение гидроксида хрома (III) и окисление его пероксидом водорода. 13. Разложение дихромата аммония. 14. Разложение пероксида водо рода под действием диоксида марганца. 15. Осаждение гидроксида железа (II) и окисление его на воздухе. 16. Выделение серебра из его солей действием меди.

<u>Лабораторные опыты.</u> 20. Свойства соединений хрома. 21. Свойства марганца и его соединений. 22. Изучение минералов железа. 23. Свойства железа. 24. Свойства меди, ее сплавов и соединений. 25. Свойства цинка и его соединений.

<u>Практическая работа № 6.</u> «Получение медного купороса. Получение железного купороса»

<u>Практическая работа № 7</u>. Решение экспериментальных задач по теме «Металлы побочных подгрупп»

<u>Практическая работа № 8.</u> «Получение соли Мора»

Контрольная работа № 2 по теме «Металлы»

Виды деятельности

Классифицировать неорганические вещества. Обобщать знания и делать выводы о закономерностях изменений свойств металлов побочных подгрупп в периодах и группах Периодической системы. Характеризовать общие свойства металлов. Прогнозировать свойства металлов и их соединений на основе знаний о Периодическом законе. Характеризовать нахождение в природе, свойства, биологическую роль и области применения металлов. Наблюдать и описывать демонстрируемые опыты.

Тема 5. Строение вещества Атомно-молекулярное учение (8 ч)

Вещества молекулярного и немолекулярного строения. Качественный и количественный состав вещества. Молярная и относительная молекулярная массы вещества. Мольная доля и массовая доля элемента в веществе. Строение атома. Нуклиды. Изотопы. Дефект массы. Типы радиоактивного распада. Термоядерный синтез. Открытие новых химических элементов.

Ядерные реакции. Типы ядерных реакций: деление и синтез. Скорость реакции радиоактивного распада. Применение радионуклидов в медицине. Метод меченых атомов. Применение радиоактивных нуклидов в геохронологии. Современная модель строения атома. Корпускулярноволновые свойства электрона. Представление о квантовой механике. Соотношение де Бройля. Принцип неопределенности Гейзенберга. Понятие о волновой функции. Квантовые числа.

Атомная орбиталь. Распределение электронов по энергетическим уровням в соответствии с принципом наименьшей энергии, правилом Хунда и принципом Паули. Особенности строения энергетических уровней атомов d-элементов. Электронная конфигурация атома. Классификация химических элементов (s-, p-, d-, f-элементы). Электронные конфигурации положительных и отрицательных ионов. Основное и возбужденные состояния атомов. Валентные электроны

Периодический закон. Формулировка закона в свете современных представлений о строении атома. Мировоззренческое и научное значение Периодического закона Д. И. Менделеева. Радиус атома. Закономерности в изменении свойств простых веществ, водородных соединений, высших оксидов и гидроксидов в периодах и группах. Электроотринательность.

Химическая связь. Электронная природа химической связи. Виды химической связи. Ковалентная связь и ее характеристики (энергия связи, длина связи, валентный угол, кратность связи, полярность, поляризуемость). Ковалентная неполярная и полярная связь. Обменный и донорно-акцепторный механизмы образования ковалентной полярной связи. Геометрия молекулы. Дипольный момент связь, дипольный момент молекулы. Ионная связь. Отличие между ионной и ковалентной связью. Металлическая связь. Водородная связь и ее влияние на свойства вещества. Межмолекулярные взаимодействия. Понятие о супрамолекулярной химии.

Агрегатные состояния вещества. Газы. Газовые законы. Уравнение Клайперона—Менделеева. Закон Авогадро. Закон объемных отношений. Относительная плотность газов. Средняя молярная масса смеси. Строение твердых тел: кристаллические и аморфные вещества.

Типы кристаллических решеток: атомная, молекулярная, ионная, металлическая. Понятие об элементарной ячейке. Расчет числа ионов, содержащихся в элементарной ячейке. Ионные радиусы. Определение металлического радиуса. Зависимость физических свойств вещества от типа кристаллической решетки. Причины многообразия веществ. Современные представления о строении твердых, жидких и газообразных веществ.

<u>Демонстрации.</u> 1. Образцы веществ молекулярного и немолекулярного строения. 2. Возгонка иода. 3. Модели молекул. 4. Кристаллические решетки.

Виды деятельности

Обобщать понятия «ядро», «протон», «нейтрон», «изотопы», «нуклиды». Характеризовать строение атомного ядра. Различать термины «нуклиды» и «изотопы». Характеризовать типы радиоактивного распада, типы ядерных реакций. Описывать получение новых элементов посредством ядерных реакций. Составлять сравнительные и обобщающие схемы. Проводить расчеты по химическим формулам и уравнениям реакций. Осуществлять познавательную рефлексию в отношении собственных достижений в процессе решения учебных и познавательных задач.

Тема 6. Теоретическое описание химических реакций (17 ч)

Классификация химических реакций по различным признакам сравнения. Гомогенные и гетерогенные реакции. Классификация по знаку теплового эффекта. Обратимые и необратимые реакции. Каталитические и некаталитические реакции. Реакции с изменением и без изменения степени окисления элементов в соединениях. Энергетика химических реакций. Тепловой эффект химической реакции. Эндотермические и экзотермические реакции. Термохимические уравнения. Теплота образования вещества. Закон Гесса и следствия из него. Энергия связи. Понятие о внутренней энергии и энтальпии. Понятие об энтропии. Второй закон термодинамики. Формула Больцмана. Энергия Гиббса и критерии самопроизвольности химической реакции. Обратимые реакции.

Химическое равновесие. Константа равновесия. Принцип Ле Шателье. Равновесные состояния: устойчивое, неустойчивое, безразличное. Смещение химического равновесия под действием различных факторов: концентрации реагентов или продуктов реакции, давления, температуры. Роль смещения равновесия в технологических процессах.

Скорость химических реакций, ее зависимость от различных факторов: природы реагирующих веществ, концентрации реагирующих веществ, температуры, наличия катализатора, площади поверхности реагирующих веществ. Реакции гомогенные и гетерогенные. Элементарные реакции. Механизм реакции. Активированный комплекс (переходное состояние). Закон действующих масс.

Константа скорости реакции, ее размерность. Скорость реакции радиоактивного распада. Период полураспада. Правило Вант-Гоффа. Понятие об энергии активации и об энергетическом профиле реакции. Уравнение Аррениуса.

Катализаторы и катализ. Энергия активации катализируемой и некатализируемой реакции. Активность и селективность катализатора. Гомогенный и гетерогенный катализ. Гомогенный катализ в газовой фазе. Каталитическое окисление угарного газа в конвертерах выхлопных газов в автомобилях. Роль катализаторов в природе и промышленном производстве. Ферменты как биологические катализаторы.

Демонстрации. 1. Экзотермические и эндотермические химические реакции. 2. Тепловые явления при растворении серной кислоты и аммиачной селитры. 3. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. 4. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. 5. Зависимость положения равновесия в системе 2NO2 N2O4 от температуры.

Лабораторные опыты. 26. Каталитическое разложение пероксида водорода.

Практическая работа № 9. «Скорость химических реакций. Химическое равновесие»

Растворы

Способы выражения количественного состава раствора: массовая доля растворенного вещества (процентная концентрация), молярная концентрация. Титрование. Растворение как

физико-химический процесс. Кристаллогидраты. Дисперсные системы. Коллоидные растворы. Истинные растворы. Дисперсная фаза и дисперсионная среда. Суспензии и эмульсии. Золи и гели. Опалесценция. Эффект Тиндаля. Коагуляция. Седиментация. Синерезис. Реакции в растворах электролитов. Качественные реакции на ионы в растворе. Кислотно-основные взаимодействия в растворах. Амфотерность. Ионное произведение воды. Водородный показатель (рН) раствора. Сильные и слабые электролиты. Расчет рН растворов сильных кислот и щелочей. Константы диссоциации слабых электролитов. Связь константы и степени диссоциации. Реакции ионного обмена. Полные и сокращенные ионные уравнения. Гидролиз солей. Гидролиз по катиону, по аниону, по катиону и по аниону. Реакция среды растворов солей: кислотная, щелочная и нейтральная. Полный необратимый гидролиз. Получение реакцией гидролиза основных солей. Понятие о теории кислот и оснований Льюиса. Значение гидролиза в биологических обменных процессах. Применение гидролиза в промышленности. Равновесие между насыщенным раствором и осадком. Произведение растворимости.

<u>Демонстрации.</u> 1. Определение кислотности среды при помощи индикаторов. 2. Эффект Тиндаля. 3. Образование комплексных соединений переходных металлов.

Окислительно-восстановительные процессы

Окислительно-восстановительные реакции. Типы окислительно-восстановительных реакций. Окисление и восстановление. Окислители и восстановители. Метод электронного и электронно-ионного баланса. Поведение веществ в средах с разным значением рН. Перманганат калия как окислитель. Окислительно-восстановительные реакции в природе, производственных процессах и жизнедеятельности организмов. Гальванический элемент (на примере элемента Даниэля). Химические источники тока: гальванические элементы, аккумуляторы и топливные элементы. Форма записи химического источника тока. Стандартный водородный электрод. Стандартный электродный потенциал системы. Понятие об электродвижущей силе реакции. Электрохимический ряд напряжений (активности) металлов (ряд стандартных электродных потенциалов). Направление окислительно-восстановительных реакций.

Электролиз расплавов и водных растворов электролитов (кислот, щелочей и солей). Законы электролиза. Практическое применение электролиза для получения щелочных, щелочноземельных металлов и алюминия. Коррозия металлов: способы защиты металлов от коррозии.

<u>Демонстрации. 1</u>. Взаимодействие перманганата калия с сульфитом натрия в разных средах.

Контрольная работа № 3 по теме «Теоретические основы химии» **Виды деятельности**

Проводить химический эксперимент по определению факторов, влияющих на скорость химической реакции и положение химического равновесия. Исследовать условия, влияющие на скорость химической реакции. Исследовать условия, влияющие на положение химического равновесия. Наблюдать и описывать самостоятельно проводимые опыты с помощью родного языка и языка химии. Делать выводы по результатам проведенных химических опытов. Соблюдать правила и приемы безопасной работы с химическими веществами и лабораторным оборудованием. Составлять сравнительные и обобщающие схемы. Проводить расчеты по химическим формулам и уравнениям реакций. Осуществлять познавательную рефлексию в отношении собственных достижений в процессе решения учебных и познавательных задач.

Тема 7. Химическая технология (6 ч)

Основные принципы химической технологии. Общие представления о промышленных способах получения химических веществ.

Производство серной кислоты контактным способом. Химизм процесса. Сырье для производства серной кислоты. Технологическая схема процесса, процессы и аппараты. Механизм каталитического действия оксида ванадия (V).

Производство аммиака. Химизм процесса. Определение оптимальных условий проведения реакции. Принцип циркуляции и его реализация в технологической схеме.

Металлургия. Черная металлургия. Производство чугуна. Доменный процесс (сырье, устройство доменной печи, химизм процесса). Производство стали в мартеновской печи. Производство стали в кислородном конвертере и в электропечах. Прямой метод получения железа из руды. Цветная металлургия.

Органический синтез. Промышленная органическая химия. Основной и тонкий органический синтез. Наиболее крупнотоннажные производства органических соединений.

Производство метанола.

Получение уксусной кислоты и формальдегида из метанола.

Получение ацетата целлюлозы. Сырье для органической промышленности. Проблема отходов и побочных продуктов. Синтезы на основе синтезгаза.

Химия и экология. Химическое загрязнение окружающей среды и его последствия. Экология и проблема охраны окружающей среды. «Зеленая» химия.

<u>Демонстрации.</u> 1. Сырье для производства серной кислоты. 2. Модель кипящего слоя. 3. Железная руда. 4. Образцы сплавов железа.

Химия и энергетика Природные источники углеводородов. Природный и попутный нефтяной газы, их состав и использование. Нефть как смесь углеводородов. Состав нефти и ее переработка. Первичная и вторичная переработка нефти. Перегонка нефти. Крекинг. Риформинг. Нефтепродукты. Октановое число бензина.

Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов.

Каменный уголь. Коксование угля. Газификация угля. Экологические проблемы, возникающие при использовании угля в качестве топлива. Альтернативные источники энергии.

Виды деятельности

Характеризовать основные факторы химического загрязнения окружающей среды. Определять источники химического загрязнения окружающей среды и аргументировано предлагать способы их охраны. Определять понятие «зеленая» химия. Характеризовать общие принципы «зеленой» химии

Тема 8. Химия в повседневной жизни (3 ч)

Химия пищи. Жиры, белки, углеводы, витамины, ферменты. Рациональное питание. Пищевые добавки. Пищевые добавки, их классификация. Запрещенные и разрешенные пищевые добавки. Основы пищевой химии. Химия в медицине. Понятие о фармацевтической химии и фармакологии. Разработка лекарств. Лекарственные средства, их классификация. Противомикробные средства (сульфаниламидные препараты и антибиотики). Анальгетики (аспирин, анальгин, парацетамол, наркотические анальгетики). Антигистаминные препараты. Вяжущие средства. Гормоны и гормональные препараты. Проблемы, связанные с применением лекарственных препаратов. Вредные привычки и факторы, разрушающие здоровье (избыточное потребление жирной пищи, курение, употребление алкоголя, наркомания).

Косметические и парфюмерные средства. Бытовая химия. Понятие о поверхностноактивных веществах. Моющие и чистящие средства. Отбеливающие средства. Правила безопасной работы с едкими, горючими и токсичными веществами, средствами бытовой химии.

Лабораторный опыт 27. Знакомство с моющими средствами

Виды деятельности

Характеризовать основные компоненты пищи — белки, жиры, углеводы, витамины. Описывать химические реакции, лежащие в основе получения изучаемых веществ. Классифицировать и характеризовать пищевые добавки. Пропагандировать здоровый образ жизни. Использовать полученные знания при применении различных веществ в быту. Наблюдать и описывать демонстрируемые материалы.

Тема 9. Химия на службе обществу (3 ч)

Химия в строительстве Гипс. Известь. Цемент, бетон. Клеи. Подбор оптимальных строительных материалов в практической деятельности человека.

Химия в сельском хозяйстве Минеральные и органические удобрения. Средства защиты растений. Пестициды: инсектициды, гербициды и фунгициды. Репелленты.

Неорганические материалы Стекло, его виды. Силикатная промышленность. Традиционные и современные керамические материалы. Сверхпроводящая керамика. Понятие о керметах, материалах с высокой твердостью.

<u>Лабораторные опыты</u> 28. Клеи. 29. Знакомство с минеральными удобрениями и изучение их свойств

Виды деятельности

Характеризовать важнейшие химические вещества в строительстве (гипс, известь, цемент, бетон и др.). Использовать полученные знания при применении различных веществ в быту. Наблюдать и описывать самостоятельно проводимые опыты ьс помощью родного языка и языка химии.

Тема 10. Химия в современной науке (4 ч)

Особенности современной науки. Профессия химика.

Методология научного исследования. Методы научного познания в химии. Субъект и объект научного познания. Постановка проблемы. Сбор информации и накопление фактов. Гипотеза и ее экспериментальная проверка. Теоретическое объяснение полученных результатов. Индукция и дедукция. Экспериментальная проверка полученных теоретических выводов с целью распространения их на более широкий круг объектов. Химический анализ, синтез, моделирование химических процессов и явлений как метода научного познания. Наноструктуры. Введение в проектную деятельность. Проект. Типы и виды проектов, этапы реализации проекта. Особенности разработки проектов (постановка целей, подбор методик, работа с литературными источниками, оформление и защита проекта). Источники химической информации. Поиск химической информации по названиям, идентификаторам, структурным формулам. Работа с базами данных. Современные физико-химические метод ы установления состава и структуры веществ.

<u>Демонстрации.</u> 1. Пищевые красители. 2. Крашение тканей. 3. Отбеливание тканей. 4. Коллекция средств защиты растений. 5. Керамические материалы. _6. Цветные стекла. 7. Примеры работы с химическими базами данных.

Контрольная работа № 4. «Итоговая контрольная работа» **Виды деятельности**

Характеризовать научное познание, выделять субъект и объект научного познания. Характеризовать этапы научного исследования. Характеризовать химический эксперимент как ведущий метод научного познания в химии.

Учебно-методическое обеспечение образовательной деятельности

Данный учебно-методический комплект для изучения учебного предмета «Химия» на углубленном уровне среднего общего образования включает следующие издания:

- 1. Химия. Углубленный уровень. 10 класс. Учебник с электронным приложением (авторы В.
- В. Еремин, Н. Е. Кузьменко, В. И. Теренин, А. А. Дроздов, В. В. Лунин).
- 2. Химия. Углубленный уровень. 11 класс. Учебник с электронным приложением (авторы В.
- В. Еремин, Н. Е. Кузьменко, А. А. Дроздов, В. В. Лунин).
- **3.** Рабочая программа учебного предмета «Химия» на углубленном уровне среднего общего образования к УМК по химии В. В. Еремина, Н. Е. Кузьменко, В. И. Теренина, А. А. Дроздова, В. В. Лунина и методические рекомендации по ее составлению (авторы В. В. Еремин, А. А. Дроздов, И. В. Еремина, Э. Ю. Керимов).
- **4.** Методическое пособие к учебнику В. В. Еремина, Н. Е. Кузьменко, В. И. Теренина, А. А. Дроздова, В. В. Лунина «Химия. Углубленный уровень. 10 класс» (авторы В. В. Еремин, В. И. Махонина, О. Ю. Симонова, И. В. Еремина, А. А. Дроздов, Э. Ю. Керимов).

5. Методическое пособие к учебнику В. В. Еремина, Н. Е. Кузьменко, А. А. Дроздова, В. В. Лунина «Химия. Углубленный уровень. 11 класс» (авторы В. В. Еремин, Н. В. Волкова, Н. В. Фирстова, И. В. Еремина, А. А. Дроздов, Э. Ю. Керимов).